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Underwater Explosion Rubbles II: 

The Effect of Gravity and the Change of Shape 

Ignace I. Kclodner and Joseph B. Keller 

I  Introduction 

The classical theory of an underwater explosion 

bubble is based on the assumption that the bubble re- 

mains spherical at all tines.  How3v?r actual bubbles 

do not remain spherical although they may be spherical 

initially.  Instead they become flattened or even 

kidney-shaped and often break up.  This change of 

shape Is mainly due to gravity.  The present report 

present? a theory which describes the change of shape 

as well as the rise of the bubble, by taking account 

of gravity. 

Several other euthors, such as H -rring and Ward, 

have also riven theories of the change of bubble sh*»pe 

^u~- t-~ rrravity.  The preset wor^ is intended to be 

more systematic and more complete than any of the 

former theories. 

In the present theory it is assumed that the 

water is Incompressible *nd unboxmded, and the pressure 

is assumed to be uniform throughout the bubble «t all 

times.  Initially the bubble is nssumed to be spherical. 

Then if we neglect gravity we find that the bubble 

remains spherical but performs periodic radial oscil- 

lations, exactly as in the classical theory.  Taking 

account of first o: der terms due to gravity, we find that 

the bubble remains spherical but also rises exactly as 

predicted by Herring's formula.  Higher order terms 

lead to the change of shape and sometimes to the break- 

up of tne nubble, and PISC lead to a modification of 

the Herring rise formula.  ^11 of these results rre 

discussed In section VIII of this report. 

The assumption that the water Is incompressible 

can be removed, ad it wa3 in our previous report en 
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the spherical bubble.  However It does not seem worth- 

while tc add th^ complication iOf compressibility to the 

other difficulties of the present problem.  Furthermore 

in section VIII wo have Indicated how the main effects of 

compressibility can be obtained hy combining the present 

results with these cf our previous report. 

The Assumption thnt th-== w*ter Is unbounded c.n 

also be removed, and the theory without this assumotion 

Is the subject of our next report.  In thnt report it 

will be shewn that the results of the present report 

provide a first approximation to the solution when 

the bubble Is not toe near the boundaries.  Of course 

further approximations will also b.\ siven. 

In section II the problen is formulated, in section 

III moving coordinates are Introduced and in section IV 

dlmensicnless variables are defined.  The method of 

solution is explained in section V pnd the solution up 

to and including the thir^ or^er is considered in 

section VI. A special case is treated explicitly In 

section VII.  Finally in section VIII all the results are 

discussed and some general ccnclusicns are drrwn. 

II Formulation 

We assume thot an Incompressible invisti^ fluid 

cf Infinite extent contains a cas bubble within it. 

The velocity u(x,y,z,t) of the fluid is assumed to >->e 

derivable from a potential function <f>(x,y,z,t) which 

satisfies Laplace1s eouatlen 

(1) u*=V* 

(2) V2^ 0 

The pressure p(x,y,^,tjin the wpter is then <ri ven by the 

Bernoulli equation 

(3)  p = m(t) -/> 4 + £W)j -/>gz 1^,9 
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In (3) f  Is the density of water, g Is the acceleration 
of gravity and m(t) is an arbitrary function of time. 

We have also assumed that the positive z axis points 

vertically upward. 

The velocity V^  Is assumed to vanish at Infinite 

distance from the bubble 

ik)      V* — 0  as (x2+ yP+ z2)1/2  -* OD 

Prom (1) it is clear that 4 *s defined up to an 

additive function of t.  This indefiniteness can be 

removed by specifying 4 or 4>*- a^ one P°int for all t. 
For this purpose we assume 

(5) * -* 0  as (x*+ yP+ zP)l/0  -*oo . 

The condition (5) implies that $fc—
>0 at infinity, and 

also implies (4), which can therefore be omitted. 

The arbitrary function m(t) in (3) can be deter- 

mined by specifying p at one point for all t.  For 

this purpose we assume that 

2  2 (6) p(x,y,o,t)-c PQ as (x + y )->OD 

Thus m(t) can be determined from (3,5,6) which yield 

(7) m(t) = PQ. 

We call P the pressure at infinity at z=0.  [It is 
o 

just the hydrostatic pressure at the level z=0, 

namely P = p +fgz , if p is the atmospheric pressure 

and z >o is the depth of z=o below the water surface.] o 
The bubble surface is nssumed to be given by the 

equation 

(8) F(x,y,z,t) = 0 

Since the normal velocity of the bubblo surface must 

be the same as thpt of the adjacent water, F must 

satisfy the kinematic condition 
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(9) \7P • Vij) + P = 0  on  F = 0. 

The pressure IT within the bubble is assumed to 

be a known function of V, the bubble volume.  've assume 

that this function is the adiabatic one,  it = KV* , 

where K and 6 are constants, 6 being the adiabatic 

exponent for the gas within the bubble.  Then because 

pressure must be continuous across the bubble boundary, 

we have the dynamic condition p = KV   or, using (3) 

(10) PQ - ?fyt+   i 0?4>)j  - fgz = KV"6  on F = 0. 

The mathematical problem which we consider is 

that of finding <$> and F, satisfying (2,5,9,10), given 

F(x,y,z,o) and F.(x,y,z,o).  It is not necessary to 

specify 4> initially since it is determined by (2,5,9). 

In particular, we will assume that the bubble is ini- 

tially a sphere of rnduis A  and that its initial o 
radial velocity Is a constant & .  Once 4* *s deter- 

mined, u  and p are given by (1,3). 

Ill Coordinates 

Suppos" that the oriein of the x,y,z coordinate 

system is fixed at the center cf the bubble at t * 0. 

We now introduce a moving coordinate system £,V,£ by 

the eouations 

(11) t = x,V^= y, t  = z-B(t). 

In (11) B(t) is a function to be determined subseauent- 

ly in such a way that the oricin is always at the 

center of gravity of the bubble.  Moving c^rdinates 

are introduced in order that the origin remain inside 

the bubble ;s"lcng as possible. 

Because of the cylindrical symmetry of the 

problem it is advantageous to introduce the spherical 

coordinates r,9,w.  Obviously the solution will be 

independent of a>, and we will assume this from the 

outset.  We define r,©,w by 



(12)   r2= ?2 + \2+ r?  = x2+ r
9+(z-B)2 , r*0 

z-B 
cosQ 

tanco 

r  V x + y +(z-B )   *  • - 

£ = x 
V) ,  0<ox2it re    y 

Now introducing R(9,t) we write the eauation of the 

bubble surfnce In the form 

(13)   F(x,y,z,t) = r-R(9,t) = 0 

The bubble volume is then given by 

(lir)   V(t) = — (%  R3(9,t)sin9d9 s. 
The condition that the moving origin b9 at the center 

of gravity of the bubble may bo written as 

it 

(15)  ^ R cosOdO = 0 

To express (9,9,10) in terms of r and 9, we 

observe thnt if l.(%t*l9Z,9t)   is the expression in terms 

of £,*),&  for some function I(x,y,z,t), i.e. if 

I(x,y,z,t) = T(£,fyS,t), then wo have the following 

differentiation formulae: 

(16) IX«Y?, Iy=I^ Iz=T^, It=It-BI^Tt.B(co39Ir-sinOTe) 

If we apply (16) to (9,10) we obtnin 

"9 sin9 (17)      4  —§ <L = H.+«(co8©*5ias-.R   )       at r = R(9,t) •v r»   '9      "t 

(18)   K(~   (   R3sin9d9)"5 
3     Jo -o = P  - f |g(rcos9+B)+<i>  -R(cos< 

sin9 1 /i2 ."?-•,)•  3(*-«y*,J at r=R(9,t). 
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The problem is now that of finding <j>,R(©,t) 

and B(t) satisfying (9,5,15,17,18) and the initial 

conditions (19) 

(19)  R(G,o)=A0, Rt(©,o)4"o, B(o)«=B(o)=0 

It will prove convenient to employ the onergy 

equation, whi ?h is « direct consequence of the pre- 

ceding equations, namely 

it it 
(20)— (T? C    R3sin9d©)1"5  + ^(P  -fgBK  R3sin©d© - 

6-1 ) a      c •'        , 
c c 

-nfj 
It 

R?(Rt+B[co3QiS*"9 R9H(R,©,t)sin©d© = 

o 

o       o«_-j3o o  <J  J      o     - 

The terms on the left side are the internal energy of 

the bubble, the potential energy and the kinetic energy 

of the water, respectively: the terms on the right are 

the corresponding auantities evalurted at t  0, and 

E is the total energy which is defined by this eauation. 

IV Plmensl'-nless Variables 

It is convenient to define dimensicnless vari- 

ables r/t,T,X,b,r',e_,coV by introducing a unit of 

length L and a unit of time T.  Th3S3 quantities are 

define^ as follows: 

(21)r = Lr* B(t)=Lb(t) k = ^c    g 

6-1 

Lfpp;1 

4(r,©,t)   = I/V^F,©,?)       A = La   " k- -^(^i)6 
00
 6-16 

R(0,t)   = IA(©,t)       Ao= LT_1ac 



7. 
For L and T we choose the definitions 

(22)L = 3(5-l)E 
SrtffT  

1/3 

•   T = L\i^ V o 

Now equations(2,5,15,17,18,19)  become  the following 
set for ^X and b: 

(23)   <72<J  = 0,     4  -«• 0 as  r -> co 

(2^)g(©,t)   = i  - 4 4fl  "  ^   "  bicos  9   + —^ \9)   = 0 Pr  - 7 ^ 

1   f 

lt       -»—  - r 

at r =  X(©,t) 

e^2•l r  1 (25)h(e,t) = 4t + £ Ui + (-£)*][ ^ 49 + b sine)2 + 

2Xt -^   [ i 4Q  + 6  sin9]   +  X2  -  b2 )+ <5(XP]L+ b) 

k/1 r* ,3.     "6 + if- (  X^sined©)  -1=0 at r = X(©,t). 
kV2 Jo       J 

(26) X(©,o) = aQ, Xfc(©,o) = aQ , b(o) = b(o) = 0 

it 

(27) [ X-cos© sin©d© = 0 

In (23-27) the bars have been omitted and two new 

functions g(©,t) and h(©,t) have been defined by (2l|.,25). 

The quantity k is defined in (21).  equation (25) is a 

consequence of both (7) and (8), and the symbol P, in it 

denotes the Legendre polynomial ?^(cos©) = cos©. 

The energy equation (20) becomes, in dirnensionless 

variables and omitting the bars, 

(28)- %-  C X2 (xt+ b[ cos© + 2^-  Xe])<$(X,©,t) sin© d© + 
"o 

IT IT 

+ |(l-C?b)^ X3sin© d© +£~35k(^ (    X3sin© d©)1**5^"3 
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Jt should be .noted that a and a are nc longer inde- 

pendent, since they are related by the following 

equation, obtained by setting t = o in (28). 

c*'>i»2 '4+ -2 •k^.3d-.).--3 

Here c*- is the constant 

(29) Z - fci 1/2 
6 

V Method of Solution 

In order to solve (23-27) for 4(r,©,t), \(©,t), 

and b(t), we make use of the fact that a solution 4 

of (23) can be expressed as a linear superposition of 

zonal harmonics  r"^m  P (cos0) and that X can be ex- m ; 
pressed as a linear superposition of Legendre polynomials 

? (cos9).  The coefficients in these expansions are m 
functions of t.  Next we make the assumption that all 

these coefficients, as well as b(t), can be expressed 

as series(convergent of asymptotic) of powers of the 

parameter cr.     This parameter, defined in(21), is propor- 

tional to the acceleration of gravity g, and is equal 

to the ratio of the unit of length L to the hydrostatic 
i 

head P   /a    at the   initial   bubble   contor.     Thus   when °/fg 
C~= 0  the present  solution is   just that  of the  spherical 
bubble  theory since <y= 0  is  equivalent  to  g = 0. 

Formally we  assume 

(30)    4(rf9,t)  - Z   Jn£  cnm(t)  r-(ra+1)Pm(cos ©) 

(31)  X(0,t)  -£    C*1   \_     aft)   Pfcos©) ^_^ ^_^    nirr m' n—o m—o 

(32)    b(t)  =   ^   <5n b
n
(t) 

n=o 
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The problem is now reduced to that cf determining 

c  , a  and b which aru all functions of t, in such nnr  run     n ' 
a way that (30-32) satisfy (2I+-27), since (23) is already 

satisfied.  Insertion of (31,32) into (26) yields (dot 

denoting t derivative) 

(33)  a     (o)  = a  .     a     (o)=a v->-"     oo'   ' o'       ooy o 

ar,«(°)   = °*       a„-.(°)   =°       if    n+m>o nm * nm 

(3k)       bn(o)   = 0,     bn(o)   =0,     n i 0 

We now insert (30-32) into (2k,25)  and equate coefficients 

of <jrn P (COSH), thus obtaining a sequence of equations 

involving the coefficients and their first time deriva- 

tives . 

The zero order terms(n = o) correspond to the solu- 

tion obtained when C-  o, i.e. in the absence of gravity. 

The equations for these coefficients, with the corres- 

ponding initial conditions from (33) can be solved at 

once and yield 

(3^ Com - °>     aom " °'  for m  * 1 

• 

b =o o 
i 

The other two zero order coefficients satisfy 

2  • 
(36) C  = - (a „  a  ) 

oo      oo oo 

(37) (or    a  )'a l  - ia  - £ a  =1 *-" '    oo  oo  oc  2 oo  £ GO 

jiquntion (37) is the well known equation of the 

classical theory of spherical bubbles, expressed in term3 

of our units, f\nd (36) is the corresponding expression 

for the potential.  The solution of (37) satisfying the 

initial conditions (33) is a periodic function of t 
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which increases monotonically from a minimum value to 

a maximum value during a half period end decreases 

monotonically to the minimum during the next half period. 

The solution can bo written in the form 

(38)  aOQ(t) = £ 
-1*(jf& +rQ = a(tj), 

wliere the phase t is defined by oc" ^^'Q^ = a0 

The function oc(l')   is an even periodic function 
of C defined over the first half period by its inverse 

function T(aC) 

(39) _      f dx 
I (a) = \ • &<&<& 

ocW x ^-1-kx 

The numbers gc  ande* , 2c < cLf   are the minimum and maximum 

values ofo ,   and are the two roots of the equation 

(1+0)     1 - x3 - kx-3(5-l) = 0 

The parameter k, which detcrri nos fij-and*^, is 

defined in (21) and satisfies the inequality 

~   1  '6-1'5 

(kl)     0  <  k * k = -±- (i-±i 
6-1 \bj 

The equality occurs only when a =0 and P  = la-ipA ,' 

The 3econd condition means that the initial bubble 

pressure equals the initial hydrostatic pressure at its 

center.  From (1^.0) wo also have the inequality (e>6ls 

defined ±n  (29)J. 

(/j.2)  0 <£C(k) <x<oC(k) < 1 

The equalities holds when k = k in which case wc have 

/\ 
(^3)  oC(D 5cc= constant 
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Then from (38) a  (t), vhich we will henceforth call 
DO 

a(t), is constant and equal to one.  Thus the unit of 

length L is the equilibrium bubble radius, i.e. the 

radius at which the bubble pressure would equal the 

hydrostatic pressure corresponding to its initial 

center, while the total energy E would be unchanged. 

In order to va*ite the equations for the higher 

order coefficients (n j 1) it is convenient to introduce 

the functions g(9,t) and fi(©,t) defined by 

SB. 99 ' 
ikk)   g(e,t) = g(e,t) +>_  crn(b p   +a_      [ A   .; af ann + 

+(. • i) a-<m + ^ pm) .£«-1 w» 
n=o      m=o 

oo 

^ no (45)     n(©,t)  = h(9,t)   -H   <3-n(   -36 £ a-36-1 a_ + 
n=l 

co      ,_ 2! 
+   T   [iS^l    a      + a a      * a"(::1+1k     ]  P   ) = r^«    T^ nm nra nm      m' m—o    a 

cx> _  00 

fe> m=o    ^^ 

The functions g(9,t), h(9,t) occurring in (4U-,45) arc 

defined in (2l+,25).  The coefficients gnm, hnm are defined 

by the above equations.  It Is easily verified that 

g  and h  depend only upon those coefficients a„_, °nm nm sm* 
e-«.»   D„  with s < n. sm'     s 

Now inserting  (30-32)  into   {2l±)  we  obtain for 
n > 0 

e      * " — a"1*2   t*nn, + 2 * aMm - gl     , m | 1 _A«, nm a    nm      °nm       '        ' 

(46) 

m m+1 

°nl = " 7? a3[ *n + *hl + 2 8 anl " *nl]   >  ra = * 

Similarly  inserting  (30-32)   into   (25)  and making use  of 
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(45,4&) we finally obtain after some manipulation 

(47) 

act  + 3aei ^ + (a + 36 T  a~^5"1)a  = ag.      + no "    no v no   °no 

+ 2ag  + h   , m = 0 &no   no ' 

m = 1 (*\)'  = (a3^ -anl]) +2a
2hnl , 

QV + 3**nm + (1"m) "ann: = a«nm + (m+2)aSnm 

+ (m+l)h m      , m>l nm  * 

Liquations (47) and the initial conditions (33,34) 

determine the a  (m4l) and b once a,  and b. (k<n) are nm n      Ktn     k 
known.  The a , are determined in terra of the a,  with nl km 
k<n by (27).     ThoC   are given by (46). nm " 

Now all the a  (nal) arc zero, and b =0, by (35), 

and a  = a(t) is given by (38,39).  Thus we may proceed 

to find the a,  and b, and continue step by step to 
lm     i 

obtain all the coefficients.  It would seem from (47) 

that at each step n>o we have an infinite set of non- 

ho.TOgeneous ordinary differential equations to solve. 

However it is shown in Appendix I that a ,, g^ and h 

are zero whenever m>n or m+n = odd integer.  Thus those 

of equations (47) in which these quantities appear 

become homogeneous linear equations, and since the initial 

data are zero by (33,34) tnc solutions of these equations 

are zero.  Therefore we have 

(48) a  =  0  if m>n or n+m = odd integer 

b  =0  if n = even integer 

Thus from (46) 

(49) C  - 0  if ra>n or n+m = odd integer 

Hence at each step there is only a finite set of equations 

(exactly [ —«— ]) to be solved. 

As a consequence the expansions for <J, A, and b, 
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up  to  the   third power  of <r,   simplify  tc 

(50)     4  = -a2ar-1  + ff^v'2?^  • ^(C^r-1-*^"3?g) 

+ CT3(c31r"2pi+ 33r~S}  +  '  " 

X = a +cr2^a?0
+ a22?2}  +<5"3(a33P3)  +  '• 

b = <rt»1 + crb* + ... 

In the expansion for X the terms c5""a,,P, and<^a,-.P, 

were omitted, since by (27) a,., s ai-i = 0» It *s no* 
true, however, that a _ f 0 for all n. In fact, for 

n = 5 we have  a^  = -"-Z a"1^^   . 

It  is  convenient  to take  advantage  of the preceding 
2 

results,   at leexst up  to terms  in  ^   ,   in order to calculate 

g(0,t)  and h(6,t),  which thon become 

(5D     g(e.t)  5 - 3a"161(a20- ^ a22) P^3 - ^2 a-1^^ 3 + -•• 

3 A2*    2 n(0,t)  = aP1<5'+(b1  + i b2)^-2 - 3 ^ - „li0     -^u1r2 P~      + 

I  (5a2Q + 2a22 + ab1[a"1a22]>1tf'3 + 

• i (3a22 - a61[a"1a22]*) P3<J3 +  ... 

These expressions facilitate writing equations (Itf) 

explicitly. 



VI     Solution ffp  tojgj 
For n = 1  the only non-zero-coefficient, to  be 

detcrnined is  b,.     Since from  (5l)  wo have  CTI
=
 °> 

hll = a*   equation  ('4?) yields for b, 

(52) (a3^)* = 2a3 

Thus, us ins-'the initial data in (3'L), WO have 

(53) bx = 2   (    a"3 jT a3 d VJ/d T 

equation (53) is the Herring, rise formula vihick 
accounts for the only first order effect.  The bubble 
shape is unaffected in first order, out the '.vater 
flow is modified since 

-r" r* 3 c,, = - \ a^ dt. 
-   -     )        _ 

For n = 2 the^only coefficients to be determined 
are a2- and a„p.  From (47,51,53) we have the equations 

(54) aa22 + 3aa2Q + (a + 36~£ a"
35"1)a2Q = b1 +ib^ ' 

k 

a(o)= a<o) = 0 "•on ttor 

_,..   ••      ••     ••        Q • 2      (o 1   '(01 
(i?5)  aa£2 + 3-^22 " 

aa22 = " $ bl  '   22 = a 22 = ° 

In terns of the solutions of these equations and 
making use of (h-6), the only non-zero coefficients 

^~2m  are Siven by 

(56) C20 = - (a2a20)- 

For n = 3 the only coefficients to be determined 
are a.,., and b~. From (47,51,33) we have 
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(58)     aa,?  + 3acL,  - 2acJ-  = 
• * 

l33 33 j*> 
- Sb^a^ + £ aa"1a2?), 

Q,7(O)  = £,-(o)  = 0 

(59)     (r.363r =  -  3(a2b1a2C)*+ 6r.2a2Q + |  (a^a^f, 

Then  u^ing  ik'o } 

(60) 
'31 2ia „y 

b3(c)   = b7(o)   - 0 

+ 3b,a^(apr. 4a.J] 
p 

(61)   C33 = .l(a3(a2a.3i-  +^blA22J 

The  or •-.•cod inn:  souations  c',_   be  solved  explicitly 
in tht  soocil  crse  of  the  so-c  lied   "equilibrium 
bubble1',   which  is  trctnd  in the  next  suction.     In 
penerr.l,  however,   it seens  nccess.r-- to   interrrte 
the preceding; equations  nunericclly  in order tc 
obtain quantitative results.     Such results  -.ill  be 
published  soon. 

It   is  useful  to  recognize   that  equation   (53) 
for  the  rise  b, (t)   cm  be  put  in  t' : form. 

(62)     b   (t)   =  S t2 + ?   t  + ri 
Here S is a constant while / and   rrre periodic 

functions of t having the 3^.0 period as a(t).  This 

forr; perr.its us to dot or nine the behavior of b, (t) 

for all t by merely cvalu^.tiiv integrals Tor one period. 
These ±ntc •: ] i. apoer.r i.-.. the definitions of 3, 1 

and " which are, if t. is the period cf a(t) 

Penny and Fr"ce hwe cxariined t.\  solution of the homo- 

,-encous equations (hi)  for n = 1 with non-zero initial 

data in order tc study the ~rov:th of initial asvnr.etry. 



(63) s = i   ( °   ^        - 

« 2   ii     (     a^dT 
o S a'3dT- I s ° 
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-3 dT 

1 = b1(t) - st* - Pt 

The periodicity of  P   is  obvious,   while that of       can be 

proved with some -nanipul: tio::«     iicuc.uions   (63)  apply 
r» • 

-A     = a    =0. o o o 

VII  The -Jqailibriun bubble 

In section V, folluwir-g o::uati'-n(1^1) it is shown 

that if k = k then the zero order bubble radius a(t) 

rcnains constant and equal to one.  This occurs if 

the initial radial velocity is zero and if the initial 

bubble pressure equols the pressure in the water at 

the depth of the bubble center.  We refer to this 

case as that of the equilibrium bubble since the 

bubble would remain at rest in the absence of gravity. 

Since tiie radius &vty 15 identically constant 

and in fact equal to one, due to our choice of units, 

all the equations of the preceding section simplify to 

such an extent that they can be solved explicitly. 

3y solving thcsi ue obtain.the following, expressions, 

for X(9,t), b(t) and <^(r,©,t) up to and including 

the third order in 

(61*) x(e,t) = l + (ert2)2 |f(r) - 3/k P2(COSG)J 

P 3 (. 
(6td)      r P3(cos9) + .. 

-I 

(65) b(t) =<rt2 - (fft2) g(T) + .. 
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t  \ 
(66)       4(r,6,t)  = -tytr"2f, (cos*)  - i/t - cin)ljf       ;<5Cr"3 

1                 J   ^ v3o      / 

+ £"2t3r"3P0(ccs«)  + /^X t^- Jl t3 + -ill t 

4n    sin /38"11 'CT3 r"*^ Pn (cosQ) 2 
(30) 

- ^ O3^ r"^ ?3(cos9) 

In equations (61;,65) T = NJ36 't and f(T), s(D 
are given by 

(67) f(TO = X - 4- (1 - ccsT) 

(68) -(t} = ^ -^ ~~jk   [?(1 " cost) -tsinf] 

These functions both decrease fairly slowly fror: 

f(o) = 1/6, g(o) = 7/12 to f(co)= 0, g(co J = 9/20 . 

Using equations (61) and (65) we have construct- 

ed graphs of the bubble profile at various ti.ies from 

t = 0 until t = 1.C9, choosing £~ =  .222.  These 

graphs, in Figure I , 3h.>w the rise of the bubble as 

well as its deformation. 

3inc<~ (6I|.,65) s.re only the first tor-is in a 

scries solution, we can expect then to represent the 

solution accurately for «." short time, after which the 

omitted teiT.;3 bocorv.o important.  In order to determine 

when the omitted terms become .significant, we oa-n  

cxar.Inc the expressions in (64.,65) to find when they 

fail.  Two kinds of failure occur.  In the first kind, 

the origin of coordinates, which is located at the 

center of gravity of the bubble, may cross the bubble 

surface and entor the water.  Then the potential 

function 4(r,9,t) which has singularities at the ori- 

gin, will be singular in the ,:ater, contrary to the 
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assu ;;>tior of regularity on which the solution wa3 

based.  Thoroforc the „xprr:3sIor.3 (6^,65) certainly 

beco":o invalid as 300:1 as X = 0 Tor soie values of 

6 and t.  If £-> .222 this failure ...-, the first to 

occur, and it occurs when eft ir.C a;.e. fcr © - ft. 

Thus in this case the be.tt<_ : of the bubble bulges 

upward until it reaches the ccnccr of gravity. 

ihc acc.y-.i6.  type of failure oc-.ur:; because (65) 

predicts thai the Dubblc v.'ill rise for awhile and 

then fail.  This is, of course, physically ir.ro£S;/.i- 

able, and we therefore consider (65) to fail when 

b(t) = 0, i.e. wren the bubble stops rising.  This 

type of failure is the first to occur ifcTs .222, 

and it occurs when (ft2~ .6.  Therefore when or = .222 

both failures occur sirsultar.eousl", and this occurs 

at t = 1.09, vrhlch expla'ns why the graphs in Figure I 

were only constructed until this value of t. 

As an oxample of these results, let us consider 

a bubble of one inch radius initially located tea 

inches below the surface.        i; n 
u =1 , z = io ) o     '  o 

The pressure  above  the  s'arfacc  is  at";03oheric   (p    = o 
1 atmosphere) so that the hydrostatic head at the bubble 

is 33 feet plus lv  inches or t|06 inches, which is 

i|0b tl::o3 the initial radius.  Thus (j = tp^- = .002:|.6. 

The unit of length L is equal to the initj.c.1 radius 

A for the equilibrium bubble, so L = A =1 inch, 
O w 

Then the unit of ti:.ie T = .0025 seconds.  If v:c use 

.the Herring rise forr.ula, which is the. first tern of 

(65), the ri..- b(t) = C"t2, 30 the bubble will reach 
2  ^o the surface when <Jt = — = ICor t = 6ij. units. 

However cq at ion (6b) fails when \(n,t) = 0 which 

occurs at t = 16 units or .C4.O seconds. The bubble 

rises only .55 inches before the formulae fail. 
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VIII  Discussion of Results 

be have presented a syite .atic -cthod for 

dc to ruining the shape and rise of the bubble- and the 

potential function in the water, fro:; which the pressure 

can be co«.rputeu.  This 'lcthod ie based npcr. a power 

series expansion in terns of  a dincnsionleas para- 

ncter cr which is the ratio of the equilib) _un bubble 

radius t<; the hydrostatic bead above the initial 

bubble center.  Thus C  is proportional to the accel- 
eration of gravity g, so our expansion car. also be 

considered to be in powers of g.  Per any bubble 

which docs not vent (i.e. break through the wator- 

air surface) during its first expansion, <3" ic less 

than one and greater than zero. 

The terns of zero  order in C correspond to the 

classical theory of a spherical bubble.  They describe 

a solution in which the bubble reviains spherical and 

perfoms undated periodic radial oscillations, while 

its center rc.ioins at rest.  The equilibrium bubble 

is a special case which does not even oscillate. 

Vlien ter.is of fir^t order y;; also included, the only 

modification is that the center of the bubble risce 

according, to tho Herring rise fcrnula. 

b"hen terns of soco. d order are included the 

shape of the bubblo is found to change although the 

rise formula is unmodified.  The changes in the bubble 

arc of two kinds corresponding tc the two terns 

2 2 $  a20(t) and <y a^t) P (cos«) in (50) respectively. 

The first tern corresponds to a change in volune of tho 

bubble, which is an increase in tho case of the equi- 

librium bubble and also in a numerical ercanple which 

we have treated.  Such an increase is to be c;cpected 

in general on physical grounds, since tho bubble i3 

rising into a region of lov;er prescure.  Fron the 

differential cquatlon(blj-) for apQ(t) it can be shown 

that in general n-Q starts at sere and increases, at 
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least initially, ir. agreement with the preceding 

considerations.  A3 a consequence of the increase of 

apQ(t) it follows that the tine between successive 

miniria (or ma.;:ir.a) of the bubble volume is decreased 
i 

belov; that giver, by the zero order (spherical bubble) 

tcrr: alone.  In addition the expansion phase is in- 

creased in duration, while the contraction phc.se is 

diminishod in duration. 

Tlie other second order tor/: corrcspends to a 

flattening cf the bubble.  Since a_ (t) starts at zero 
2.2 

and decreases, as can be seen fror. the differential 

equation(£5), this flattening is in the vertical 

direction, i.e. the vertical separation between top 

and bottc:.; is dir.i ished. while the horizontal 

senaratior1 between sides is increased.  This can bo 

seen in the figures, and is in arreoiiont with ob- 

sorvaticn, a3 are the preceding results. 

When tcriiis of third order in o~ are included 

the shape of the bubble is again modified while the 

rise formula is also changed.  The only term of this 

order in the equation for the bubble radiu3 is 

(f  a--(t) ?_(costt), which leaves the bubble volume 

unchangod but changes its shape.  Since a~~(t) 

starts at zero and increases, as one can she;; from 

-.—  —_--_» — .._ ___  —1 — ^_^.„..  \^--/j  ».»— —  ^.^....^ ~ v».  —. .— A» ^- 

corresponds to pulling up the bottom and pushing up 

the top, so the bubble become kidney-shaped with the 

lower side c^ncav: .  This behavior car. be seen in the 

figures and i3 al3o in agreement with observation.  The 

third order correction to the rise fornuln can be shown 

to start at zero and to become negative, from equation 

(59), in agreement with the numerical oxample and the 

equilibrium bubble.  This correction i3 also in agree- 

ment with experiment, since the Korring formula pre- 

dicts too large a rise. 

All of the gravity effects described here arc 
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greater In na^nitudo and occur -.ore quickly, the larger 

the value of tf~,  '.:ou ^ is larger for lar^o c;cplocicns, 

so all the off* cts described should be ;orc prou-icnt 

for such explosions.  A l.Tge value of C is also 

obtained if tho pressure above the water surface is 

reduced.  This explains why these efforts have been 

observed in reduced pressure tanks. 

The behavior of the bubble depends not only 

upon c but alse upon another dimensionicss parameter 

k.  The smaller the v;lue of k the ,-roater is the 

amplitude of oscillation of the bubble, since small 

k corresponds to a lar.^e e:cplusion energy 

A 
The maximum value of k is k which is attained for the 

equilibrium bubble.  Since the <ravitational effects 

depend mainly on Ct  results for the equilibrium 

bubble indicate what v;ill happ"cr: in general.  There- 

fore we c;:pcct that for any value of k, equations 

(50) for X and b v/ill fail at a certain tine, just as 

they do for the equilibrium bubble, k = k.  Since in 

general the bubble becomes flattened and then kidney- 

shaped, wc orrpect the center part of c lie lower surface 

to continue rising, like a jet, until it roaches Lhe 

upper surface, thus converting the bubble into a 

toru3.  For the equilibrium bubble, failure of the 

equations occurs when CTt ~.8, so we may assume that 

the real breakdown for any bubble will occur when 
2 -1/2 tf"t -il or tZz\j-   '    .  As one  period of the bubble is 

about 3/2 unit3 for an explosion  bubble, the breakup 

should occur after about —---1/2 n   . .   ... . 30  '  periods.  For lartre 

explosions, with lor^e values of<T, this riay occur 

during the first period. 

If the bubble docs breakdown into a torus, what 

v.dll be its subsequent behavior?  The results of 
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Tomctika on a torus of one fluid within another fluid 

indicate that a torus is also unstable and will 

generally breakup into a certain number of pieces 

determined by the dimensions, etc.  Then each of these 

pieces might flatten, become kidney shaped and break- 

down into another torus, which would again breakup, 

etc.  This socms to happen when a drop of one fluid 

(e.g. ink) is dropped into another (e.g. water). 

Finally let us consider hew compressibility will 

alter the present results.  Wo have attempted to 

account for coi.pressibility of the water, as wo did 

in our previous report on the spherical bubble, by 

using the wave equation for the potential in the 

water rather than Laplace! s equation,  Vie then 

expressed the solution of this equation as an infinite 

scries of nultipoles, but we wore forced to use a 

fixed origin rather than a moving one.  Wo also 

expressed the bubble surface as a series in powers of <5~ 

and in Logendrc polynomials, and attempted to determine 

the coefficients.  Uo found that the torus of zero 

order in <3" were exactly the same as the solution of 

our previous report, as we naturally expected.  The 

higher order coefficients satisfied second order equa- 

tions similar to those obtained in the present report, 

but the coefficients in those- equations involved the 

function a(t) of our previous report, rather than the 

incompressible solution a(t).  This was not the only 

Uiii-jrujiuu    uuo   ijiv>j.,i>jCi    CO   uu    i^iu   iii'jO i,   XiajpOPTSKirG   unvi. 

I.'o therefore expect that all of the present results 
« »i 1  1        nf i 1  1        ^.^vvTir       *. v»      n       r*r\'-n-\v* r\ ci n *? T->"1   rt      -f

1 "1 * l A A .-, y, /I      •*- V\ #- 4- *•• J. J-U-     *-» w a. J_ J_     f**.jj \J j, j       J-Ai     *—      i^v: ij 'i wuui i-»Ju ^     1 j.uxu*      uUu     vliu •»/ 

the main effects of compressibility would bo accounted 

for by replacing a(t) in all equations by the compressible 

solution of our previous report.  In this t^ay the 

main result of that report-damped radial oscillation— 

would be incorporated into the present work. 

"In an unpublished manuscript. 
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Appendix I 

Theorem:  If ^, X and b are represented by the formal 

series in equations (30-32) and if they satisfy the 
equations (24-27) then for all n > 0 

(Al) g * h _ = a__ * c » 0 
IUU 1UU lUU lull 

if m > n or if m • n is odd, and 

(A2) b.* 0 n 

if n is zero or even. 
Furthermore a^ and h  are polynomials In a. J, 

*k £ '  ^k an<^ ^k w^-^ 0 < £    <  k < n and are independent 
of all other a's and b's except a^_. oo 

Proof: The proof relies on induction with respect to 
n. Thus we assume that the theorem is true for all 

n < N ant? we will show that this implies the theorem 
for n * N • 1.  It has already been shown in the text 

that the theorem is true for n = 0 (see equations (35) 
and (51)) and therefore the theorem will follow for all n. 

In order to perform the inductive step* we Intro- 
y 

duce the set HC   of all formal power series in a and x 
with coefficients depending upon a parameter t, which 
satisfy the conditions u^-ft) * 0 if n <  k, or m > n and 
n< £ 9  or B • n » odd and n <  Z.    The quantities 
u_(t) are the coefficients in such a formal series u 
given by 

(A3) u » fl <rn jF xm ii (t). 
n*0   ra»0 

-£        £ We also define the subset H.  C H.  of power series in 

which the non-sero coefficients u , n < £ ,  are polyno- nm   •* 
mials over some set to]. 

If x * cos ©, then since P^(x) is even or odd ac- n 
cording as n is even or odd it follows from the induction 
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hypothesis that 

(A4)  g £ HJJ,  h £ H|J. 

If we let [c] denote the set of a , c , b„ and their run  run  n 
time derivatives with 0 < n < N then it also follows 

from the induction hypothesis that 

(A5)  J>(r,t) EHJ,   A £ H*.  bx £ l£. 

We first wish to show that 

(A6) g £ H*+1,  h £ i!**1. 

In order to do this we first note the following proper- 

ties of the sets H. : 

(a) gjf C fi/'  if £  > /'  and  k > k« 

(b) u £ §/ -* unm<ynxm SHn°°      n < >£ 

(c) u £ ft/,       v £ H^ -* (Cfcu • pv) £ ft/,       uv £ fi^*k 

(d) u £ ft/,      v S ft/',       / + k«  < i'   * k - uv £ gk%k' 

(e) u £ H^f      a   ^ 0 -* (OC  • u)n - na^u £ ft/*1, 

(a • u)n - a n £ uf 

(f) u £ ft/ -* u.  £ ft/ o to 

(g) u £ ft/,   v £ ft/ -• (1 - x2)uxvx £ H/
+1

. 

How making use of these properties and the induction hypo- 

thesis we can prove (A6). 
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To prove (A6) we consider various parts of g and fi 

separately. Thus if we consider the following terras in 

g we have 

a "*nra  v" '' nra,'"in u?) *r( x.e.t) • r *
n Z tz f »„m - (- • D^'iJJ, 

n*l   m*0 

-2 . „ -3, * a*a[ \-'  *• 2a"°(A - a)] 

00   ..  CO 

Z "nZ 
n*l   m=0 

• Z *" X (m • Dcnra(a-
(m+2) - A-(n+2,)Pm £ H ^3    i3\        nin ra 

pN+l 
Ho 

This is proved by noting that since a £  0, the first term 
above is in Hv  according to (e). Furthermore each term 

in the sura is in H~!*, by (e), (d) and (a), and therefore 

in H?*1. Now by (c) the sum is also in H*[+1. Thus the o        * o 
statement (A7) is proved.  In a similar way the remaining 

terms of g, and all the terms in n may be shown to belong 

to HJJ  » but the details will be omitted. Therefore (A6) 

may be considered proved. 

Now we consider equations (47) for the a^^ and b nm     n 
with n < N + 1. Whenever m>norn+m = odd, the inhomo- 

geneous terms in the equation for a__ vanish, since these nm 
terms are proportional to h  and g^# which have just 

been shown to vanish. The resulting equations are linear 

and homogeneous, ard by (33) the initial data are zero. 

Therefore it follows that the solutions a  = 0 for m > n nm 
or n • m odd. Similarly from equation (47) for b we 

find that V + a.- = 0 for n even.  In order to conclude n   nl 
that b » 0 for n even mZ  must prove that a^ = 0 for n 
even. Once this is proved, it will also follow from (46) 

that c__ « 0 for m > n or n • m odd and the theorem will nm 
have been proved. 

Thus we must show that for N odd, a~+1 , - 0. To 

this end we consider equation (27) and expand the inte- 

grand in powers of a,  using (31) for A. The coefficient 

of a        In this expansion is a sum of terms of the form 
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rl   4 
(A8) /    TT  [an m  Pm (x)]x dx. 

^    1-1    nini ml 

In this aquation the variable x - cos 9 has been Intro- 

duced.  If all n. In a particular term with a non-vanishlng 

Integrand are < N, then since their sum * N + 1 = even, 

the sum of the corresponding m. Is also even. This fol- 

lows from the Induction hypothesis, since for n <  N, 
4 

n. + m- a even If aw M ^0. Consequently TT P„, (x) la 1   1 nlMl lsxl Ml 

an even polynomial In x and therefore the Integral vanishes. 

Hence the only terms not vanishing Identically are 

those In which one n, say n. * N + 1 and the other n. are 

zero. Now If n. » 0 then m. * 0 since otherwise a... = 0. 
4  1 1 offlj 

Therefore TT P  (x) = P_ (x) and the Integral vanishes 
1=1 mi      mJ 

unless m. - 1 due to the orthogonality of Legendre poly- 

nomials. Consequently the only non-vanishing terms are 

of the form 

(A9)       a3J •H+lfll'i(x)x dx * § *\+lfl- 
-1 

There are four such terms and thus the coefficient of 

<T        is ^ a a^^ ,. From equation (27) th4.s coefficient 

must vanish and therefore 

(A10) a,j+lfl = 0. 

This completes the proof of the theorem. 
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Figure 1 

Rise and Change of Shape of "Equilibrium" Bubble 

Profiles are shown for five values of t from t * 0 until 
t = 1.89, at which time breakdown occurs. The center of 
gravity is also shown for each value of t by a dash on 
the z-axis. 

!_ 
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